
 Adaptive Soundtrack Overview

 Adaptive Soundtrack Overview

 Quick Look:

 MusicSource:
 Component
 AudioSource, score trigger threshold and playback timing for each Sound

 LevelSound:
 Component
 MusicSource manager, queues music changes with Maestro

 BehaviorMusicPlayer:
 Component
 Manages a “tracklist” of LevelSound Components, features playback controls

 Maestro:
 System
 Music-based event system, TempoTools parameters in listeners

 Clock:
 System
 Time counter

 TempoTools:
 System
 Track beats, count beats, synced event trigger, check time against beats

 Copyright © 2022 DigiPen, All rights reserved. 1

 Adaptive Soundtrack Overview

 Overview:

 Stems
 As a rough guideline, music tracks are separated into the following voice groups:

 Bass
 Drums 1

 - Kick
 - Snare
 - Some cymbals

 Drums 2
 - Fills
 - Misc FX
 - More cymbals

 Candy
 - Any space-fillers or ornaments

 Melody
 - Leads
 - Vocals

 The LevelSound system supports tracks that contain fewer or more voice groups.
 This guide serves only as a convention.

 Song Progression
 Total score increases over time drives song progression by triggering di�erent
 sounds and loops.

 Velocity-Driven E�ects
 Each stem can have DSP e�ects with parameters driven by smoothed player velocity.

 Copyright © 2022 DigiPen, All rights reserved. 2

 Adaptive Soundtrack Overview

 Features:

 MusicSource
 Component

 MusicSource components are derived from the
 AudioSource class. In addition to all AudioSource and
 Component members, they also contain a
 Theshold/Division/O�set vector and an integer for iterating
 through that vector. The Theshold/Division/O�set vector
 (abbreviated to thresDivO�) contains tuples of three integers,
 the first representing the score threshold at which to queue a
 Sound with Maestro and the beat division and o�set at which
 that Sound will play (passed to the corresponding parameters
 in the TempoTools::IsBeat function). Each index of the
 thresDivO� vector corresponds with an index in the
 MusicSource’s Sound vector (inherited from AudioSource).

 The Component::Callback function override in
 MusicSource stops the current sound, increments the sound
 iterator, then plays the next sound in the MusicSource’s Sound
 vector.

 MusicSources are useful for stepping through a series of musical loops,
 progressing through a song structure when triggered by external inputs such as
 game events. LevelSound uses MusicSource components for individual audio tracks,
 with iteration driven by the game score.

 MusicSources can have DSP e�ects with parameters driven by smoothed
 player velocity.

 - GameObject Component
 - Derived from AudioSource
 - Each Sound in the AudioSource has three additional parameters:

 - The score threshold at which to queue a Sound with Maestro
 - The beat division at which that Sound will play
 - The beat o�set at which that Sound will play

 - Useful for progressing through a song structure, triggered by external inputs
 such as game events

 Copyright © 2022 DigiPen, All rights reserved. 3

 Adaptive Soundtrack Overview

 LevelSound
 Component

 LevelSound drives and serves as a Component Manager for MusicSource
 Components. Its primary purpose is to check the ScoreBoard Component for the
 score value and register its child MusicSource objects as Maestro listeners when
 their score thresholds are met.

 - GameObject Component
 - Drives and manages MusicSource Components
 - Check the ScoreBoard Component for the score value and registers its child

 MusicSource objects as Maestro listeners when their score thresholds are
 met

 BehaviorMusicPlayer
 Component

 MusicPlayer objects manage multiple “tracks” of LevelSound Components.
 They operate from a “tracklist” (read from a JSON file) with controls to skip forward,
 skip backward, mute, and adjust volume, similar to an MP3 player. They can also pair
 with their parent GameObject’s AudioSource Component to trigger sounds when
 skipping tracks.

 - Manages a “tracklist” of LevelSound Components
 - Features controls to skip forward, skip backward, mute, and adjust volume,

 similar to an MP3 player
 - Can also pair with their parent GameObject’s AudioSource Component to

 trigger sounds when skipping tracks

 Maestro
 System

 Maestro is a music-based event system. It links directly with TempoTools to
 trigger the Callback functions of its listeners when their TempoTools beat
 parameters are met. In practice, this allows for actions to be queued and triggered
 at musically-relevant times. This could include musical transitions in an adaptive
 soundtrack system, visual e�ects to accompany music changes, or gameplay events
 timed to align with key musical moments.

 Copyright © 2022 DigiPen, All rights reserved. 4

 Adaptive Soundtrack Overview

 - Music-based event system
 - Triggers the Callback functions of its listeners when their TempoTools beat

 parameters are met
 - Allows for actions to be queued and triggered at musically-relevant times

 Clock
 System

 Clock is a basic timer object. It counts elapsed time and contains functions
 for pausing, resuming, resetting, and checking time. Clock operates as an ISystem,
 instanced by the Engine.

 - Basic timer object that counts elapsed time
 - Contains functions for pausing, resuming, resetting, and checking time
 - Operates as an ISystem, instanced by the Engine

 TempoTools
 System

 TempoTools is a musical tempo tracking system. Given a tempo and phrase
 length, it tracks and counts beats over time. This is the core for music-synced
 gameplay events and adaptive audio. TempoTools contains functions for checking if
 the current time is a downbeat (given a beat multiple, o�set, and time
 approximation threshold), controlling the beat counter, and checking time since the
 last recorded beat (either as an absolute time or as a proportion of a single beat’s
 progress).

 TempoTools pairs directly with Clock for time tracking. There should typically
 be only one TempoTools instance per project, but multiple objects could be used for

 Copyright © 2022 DigiPen, All rights reserved. 5

 Adaptive Soundtrack Overview

 subdivisions, unsynced tempo counters, or simultaneous tempo counters at an
 o�set.

 - Tracks and counts beats over time
 - Core for music-synced gameplay events and adaptive audio
 - Contains functions for checking if the current time is a downbeat
 - Contains functions for checking time since the last recorded beat
 - Pairs directly with Clock for time tracking

 Copyright © 2022 DigiPen, All rights reserved. 6

 Adaptive Soundtrack Overview

 Files:

 JSON Files

 LevelSound | .json
 Container Field Type Description

 Music
 Sources

 Array Array of Arrays, each representing a
 MusicSource object to load.

 Music
 Sources

 Array MusicSource to load.

 Music
 Sources ->
 Array

 String Filepath to an AudioSource JSON file
 from which to create the
 MusicSource.

 Music
 Sources ->
 Array

 Int The score threshold at which to
 register the MusicSource as an active
 Maestro listener.

 Music
 Sources ->
 Array

 Int The TempoTools beat division at
 which Maestro will trigger the
 MusicSource’s Callback function.

 Music
 Sources ->
 Array

 Int The TempoTools beat o�set at which
 Maestro will trigger the
 MusicSource’s Callback function.

 Tempo Float Tempo at which to set TempoTools
 upon LevelSound initialization.

 Phrase
 Length

 Int Phrase length at which to set
 TempoTools upon LevelSound
 initialization.

 Text String Optional text associated with the
 LevelSound Component, often the
 track title.

 Copyright © 2022 DigiPen, All rights reserved. 7

 Adaptive Soundtrack Overview

 MusicSource | .json

 Container Field Type Description

 Name String Name of the source. Used only to
 identify JSON files.

 Positional Bool Indicates whether the source pan
 should be calculated dynamically
 from the parent object’s position.

 Pan Scale Float The scale at which the pan will vary
 when dynamically calculated. A value
 of 1.0 represents a full pan over a
 single screen-width distance
 between the parent object and the
 listener. Negative values invert
 dynamic panning. This only applies
 when Positional is set to true .

 Loop Count Int The number of times to loop the
 source’s sound(s). A value of -1
 indicates infinite looping.

 Volume Float The volume at which to play the
 source’s sound(s). Values range from
 0.0 to 1.0 . A default value of 0.8
 minimizes the chance of clipping
 when multiple sounds are played
 simultaneously.

 Frequency Float Frequency multiplier of the source’s
 sound(s). A value of 2.0 will double
 the sound’s frequency, increasing the
 pitch by 1 octave, while a value of 0.5
 will half the sound’s frequency,
 decreasing the pitch by 1 octave.

 Pan Float The stereo pan value at which to play
 the source’s sound(s). A value of 1.0
 will pan the sound fully to the right,
 while a value of -1.0 will pan the
 sound fully to the left. A value of 0.0
 will play the sound with its original

 Copyright © 2022 DigiPen, All rights reserved. 8

 Adaptive Soundtrack Overview

 stereo balance.

 Note: This value is dynamically
 overwritten if Positional is set to
 true .

 Play on
 Load

 Bool Indicates if the AudioSource will play
 immediately upon initialization.

 Listener String Name of the GameObject to set as
 the listener for positional pan
 calculation.

 Stream Bool Indicates if the AudioSource will
 create its Sounds as streams, rather
 than loading them into memory.

 - false : Load Sounds into
 memory

 - true : Stream Sounds from disk

 Group String Sets the parent primary SoundGroup.
 Options are “music” , “fx” , or “ui” .

 Sound String Executable-relative filepath of the
 sound file. This may be a playable
 sound file, FMOD Sound Bank, or a
 .json file from which to load sound
 data.

 Sounds Array Array of executable-relative filepaths
 of sound files. These may be playable
 sound files, FMOD Sound Banks, or
 .json files from which to load sound
 data.

 Sounds ->
 Array

 String /
 Int

 Executable-relative filepath of the
 sound file. This may be a playable
 sound file, FMOD Sound Bank, or a
 .json file from which to load sound
 data.

 Note : A non-string value in this field
 will be treated as a sequenced period
 of silence.

 Copyright © 2022 DigiPen, All rights reserved. 9

 Adaptive Soundtrack Overview

 TDO Array Array of threshold, division, and
 o�set parameters for adaptive
 soundtrack triggering for a single
 Sound. When this is a single-level
 array of only one TDO set, there
 should only be one Sound, else only
 the first Sound in the Sounds array
 will trigger.

 TDO Array Array of threshold, division, and
 o�set parameters for adaptive
 soundtrack triggering for each
 Sound in the Sounds array.

 TDO ->
 Array

 Array Threshold, division, and o�set
 parameters for adaptive soundtrack
 triggering for the Sound in the
 Sounds array of the same index.

 TDO ->
 Array ->
 Array[0]

 Int Score threshold at which the Sound
 in the Sounds array of the same index
 will queue.

 TDO ->
 Array ->
 Array[1]

 Int Beat division at which the Sound in
 the Sounds array of the same index
 will start playback.

 TDO ->
 Array ->
 Array[2]

 Int Beat o�set at which the Sound in the
 Sounds array of the same index will
 start playback.

 BehaviorMusicPlayer | .json
 Container Field Type Description

 MusicManife
 st

 Array Array of track filepaths from which to
 create LevelSound Components.

 MusicManife
 st -> Array

 String Track filepath from which to create a
 LevelSound Component.

 Track Int Index in the MusicManifest of the
 first track to load/play.

 Copyright © 2022 DigiPen, All rights reserved. 10

 Adaptive Soundtrack Overview

 Possible Expansions (“C Bucket”):

 Randomized DSP E�ects
 - Optional: randomized DSP e�ects for variation

 - Reverb
 - Filtering

 Gameplay Triggering
 - Little “ri�s” triggered by gameplay

 - Could be their own instrument e.g. guitar (easier but might get muddy)
 - If they are an existing instrument in the soundtrack, we would need to

 duck the appropriate stem for the duration of the ri� (harder)

 Score Rate
 - Number of simultaneous stems directly correlates with rate of score increase

 - Tricks, speed will increase music layering
 1. Idle (standing still)

 - Just drums?
 2. Moving, no jumps

 - Drums and bass
 3. Moving faster / jumping

 - Drums, drums 2, bass, candy
 4. Moving fast, tricks

 - Drums, bass, candy, melody/vocals
 - These layers could shu�e to give the song variation. Maybe even

 randomly?
 - Gradual transition e�ects could be triggered by delta score trends (e.g.

 the player is completing multiple consecutive tricks so the music could
 swell, the player is slowing down so a low-pass filter gradually applies)

 Copyright © 2022 DigiPen, All rights reserved. 11

